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Thermodynamics of the Spin-1���2 Antiferromagnetic Uniform Heisenberg Chain
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We present a new application of the traditional thermodynamic Bethe ansatz to the spin-1�2 antiferro-
magnetic uniform Heisenberg chain and derive exact nonlinear integral equations for just two functions
describing the elementary excitations. By using this approach, the magnetic susceptibility x and specific
heat C versus temperature T are calculated to high accuracy for 5 3 10225 # T�J # 5. The x�T �
data agree very well at low T with the asymptotically exact theoretical low-T prediction of Lukyanov
[Nucl. Phys. B522, 533 (1998)]. The unknown coefficients of the second and third lowest-order loga-
rithmic correction terms in Lukyanov’s theory for C�T� are estimated from the C�T � data.

PACS numbers: 75.40.Cx, 75.10.Jm, 75.20.Ck, 75.50.Ee
The spin S � 1�2 antiferromagnetic (AF) uniform
Heisenberg chain has a long and distinguished history
in condensed matter physics and exhibits unusual static
and dynamical properties unique to one-dimensional
spin systems. It has been used as a testing ground
for many theoretical approaches. The Hamiltonian is
H � J

P
i Si ? Si11, where J . 0 is the AF Heisenberg

exchange interaction between nearest-neighbor spins. In
this paper we usually set kB � 1 and gmB � 1, where kB
is Boltzmann’s constant, g is the spectroscopic splitting
factor of the spins and mB is the Bohr magneton; also, the
reduced temperature t � T�J, where T is the absolute
temperature.

The S � 1�2 Heisenberg chain is known to be exactly
solvable [1], i.e., all eigenvalues can be obtained from
the so-called Bethe ansatz equations. Despite the amaz-
ing property of being integrable, the Heisenberg chain has
defied many attempts to calculate physical observables in-
cluding thermodynamic quantities. A rather direct evalua-
tion of the partition function was constructed in [2] and is
known as the “thermodynamic Bethe ansatz” (TBA), but
this did not allow for high accuracy calculations especially
in the low temperature region. The fundamental problem
in [2] is the necessity to deal with infinitely many coupled
nonlinear integral equations for which the truncation pro-
cedures are difficult to control.

The possibility to accurately calculate the physical prop-
erties of the S � 1�2 Heisenberg chain improved follow-
ing the development of the path integral formulation of
the transfer matrix treatment of quantum systems [3]. On
the basis of a Bethe ansatz solution [4] to the quantum
transfer matrix, Eggert, Affleck, and Takahashi in 1994
obtained numerically exact results for the magnetic sus-
ceptibility x�t� down to much lower temperatures than
before and compared these with their low-t results from
conformal field theory [5]. They found, remarkably, that
x�t ! 0� has infinite slope: their conformal field theory
calculations showed that the leading order t dependence is
x�t ! 0� � x�0� �1 1 1��2 ln�t0�t���, where the value of
0031-9007�00�84(20)�4701(4)$15.00
t0 is not predicted by the field theory. Such log terms are
called “logarithmic corrections.” From their comparison of
their field theory and Bethe ansatz calculations which ex-
tended down to t � 0.003, Eggert, Affleck, and Takahashi
estimated t0 	 7.7 [5]. Their numerical x�t� values are up
to 
10% larger than the former Bonner-Fisher [6] extrapo-
lation for t & 0.25.

Lukyanov has recently presented an exact asymptotic
field theory for x�t� and the specific heat C�t� at low
t, including the exact value of t0 [7]. These results are
claimed to be exact in the sense of a renormalization group
treatment close to a fixed point where only few operators
are responsible for perturbations. Questions arising about
such calculations are whether these operators have been
correctly identified and whether the effective theory has
been properly evaluated. A meaningful test of Lukyanov’s
theory is only possible using numerical data of very high
accuracy and at extremely low temperatures, such as we
have attained in our numerical calculations to be presented
below.

In this Letter we present a new application of the tra-
ditional TBA to the spin-1�2 Heisenberg chain and derive
exact nonlinear integral equations [Eqs. (3)–(6) below] in-
volving just two functions describing the elementary ex-
citations. Our derivation evolved from earlier work by
one of us using the powerful lattice approach [8,9]. By
means of a lattice path integral representation of the fi-
nite temperature Heisenberg chain and the formulation
of a suitable quantum transfer matrix, a set of numeri-
cally well-posed expressions for the free energy was de-
rived. A serious disadvantage of this approach lies in the
complicated and physically nonintuitive mathematical con-
structions, which strongly inhibit generalizations to other
integrable, notably itinerant fermion models. The present
work is a new analytic derivation of the finitely many inte-
gral equations of [8,9] by means of the intuitive TBA ap-
proach. Our Eqs. (3)–(6) are identical to those obtained in
[8] by a rigorous, however much more involved method. In
our new construction, we assume that magnons (on paths
© 2000 The American Physical Society 4701
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C6) are elementary excitations and contain all informa-
tion about the thermodynamics. Bound states are implic-
itly taken into account by use of the exact scattering phase
probed in the analyticity strip. The a posteriori success
of our reasoning is important for two reasons. First, our
construction is as simple as the standard TBA, however
avoiding the problems of dealing with density functions
for (up to) infinitely many bound states. This may be of
great advantage in the study of more complicated systems.
Second, we have a simple particle approach to the Heisen-
berg chain which will allow for a study of transport proper-
ties such as the Drude weight which has not been possible
within the path integral approach [8].

We also demonstrate here that by using our integral
equations one can improve the accuracy and extend the
temperature range of numerical calculations of x�t� and
C�t� for the S � 1�2 Heisenberg chain on the lattice far
beyond those of previous calculations. We find agreement
of our data with the above theory of Lukyanov [7] for x�t�
to high accuracy �&1 3 1026� over a temperature range
spanning 18 orders of magnitude, 5 3 10225 # t # 5 3

1027; the agreement in the lower part of this temperature
range is much better, O �1027�. For C�t�, the logarithmic
correction in Lukyanov’s theory is insufficient to describe
our numerical data accurately even at very low t, so we
estimate the coefficients of the next two logarithmic cor-
rection terms in his theory from our C�t� data.

Derivation of integral equations.—We start with the
partially anisotropic Hamiltonian H � J

P
i�S

x
i Sx

i11 1

S
y
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y
i11 1 cos�g�Sz

i Sz
i11� 2 h

P
i Sz

i with 0 , g , p�2
and magnetic field h. The dynamics of the magnons, i.e.,
the elementary excitations above the ferromagnetic state,
constitute the Bethe ansatz. Momentum p and energy e

are suitably parametrized in terms of the spectral parame-
ter x

p�x� � i log
sinh�x 2 ig�2�
sinh�x 1 ig�2�

,

e�x� � J
sing

2
p0�x� 2 h ,

(1)

where real values are obtained for Imx � 0 and 2p�2,
defining magnon bands of type “1” and “2.”

Any two magnons with spectral parameters x and y
scatter with phase shift Q�x 2 y�, where

Q�z� � 2i log
sinh�z 2 ig�
sinh�z 1 ig�

. (2)

Next we apply the standard TBA [2] just to the magnons
and ignore bound states. However, the magnons on band
“2” are considered for spectral parameter x with Imx �
2g, hence avoiding the branch cut in the scattering phase.

The density functions for particles rj and holes r
h
j for

the bands j � 1, 2 give rise to the definition of the ra-
tio function hj � r

h
j �rj . Our analysis shows that h1
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and h2 are analytic continuations of each other. Quan-
titatively we find h2�x 1 ig� � h1�x� �: h�x� subject
to the nonlinear integral equation

logh�x� �
e�x�
T

1
Z

C
k�x 2 y� log�1 1 h21� y�� dy ,

(3)

where k�x� �
1

2p Q0�x� and C is a contour consisting of
the paths C1 and C2 with Imy � 0 and 2g encircled in a
clockwise manner. Substituting log�1 1 h21� � log�1 1

h� 2 logh on the contour C1 and resolving for logh, we
find

logh�x� � 2
ē�x�
T

1
Z

C1

k̄�x 2 y� log�1 1 h� y�� dy

2
Z

C2

k̄�x 2 y� log�1 1 h21� y�� dy (4)

with

ē�x� � J
sing

2
e0�x� 1

p

2�p 2 g�
h,

e0�x� �

p

g

cosh p

g x
,

(5)

k̄�x� �
1

2p

Z `

2`

sinh� p

2 2 g�k
2 cosh g

2 k sinhp2g

2 k
eikx dk . (6)

Finally, by ignoring T - and h-independent contributions
we obtain the free energy as

f � 2
T

2p

Z `

2`
e0�x�

3 log��1 1 h�x�� �1 1 h21�x 2 ig��� dx . (7)

Numerical study of low-T behavior.—Lukyanov’s low-t
asymptotic expansion of x�t� is [7]

xlt,g�t�J �
1

p2

Ω
1 1

g
2

1
3g3

32
1 O �g4�

1

p
3

p
t2�1 1 O �g��

æ
, (8)

where g�t�t0� obeys the transcendental equation
p

g exp�1�g� � t0�t, with a unique value of t0 given
by t0 �

p
p�2 exp�g 1 1�4� 	 2.866, where g is Eu-

ler’s constant. His expansion for the free energy per spin
at h � 0 [7] yields the specific heat per spin as

Clt,g�t� �
2t
3

∑
1 1

3
8

g3 1 O �g4�
∏

1
�2�35�2t3

5p
�1 1 O �g�� , (9)

where the exact prefactor 2t�3 was found by Babujian
in 1983 [10], and the prefactor 3�8 in the logarithmic
correction term agrees with [9,11,12].

Numerical data for x�t� and C�t� were obtained
using our free energy expression (7). These data are
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FIG. 1. Magnetic susceptibility x at low temperature T for the
spin S � 1�2 antiferromagnetic uniform Heisenberg chain. In
the inset, x�T� is shown on a larger temperature scale.

considerably more accurate than those presented previ-
ously in [9]. Our x�t�J data, and the exact value 1�p2 at
t � 0 [13], are plotted in Fig. 1. The calculations have an
absolute accuracy of 	1 3 1029. The data show a maxi-
mum at a temperature tmax � 0.6 408 510�4� with a value
xmaxJ � 0.146 926 279�1�, yielding the J-independent
product xmaxTmax � 0.0 941 579�1�. These values are
consistent within the errors with those found by Eggert,
Affleck, and Takahashi [5], but are much more accurate.

The differences between our low-t Bethe ansatz x�t�J
calculations and Lukyanov’s theoretical xlt,g�t�J predic-
tion in Eq. (8) are shown in Fig. 2. The error bar on each
data point is the estimated uncertainty in xlt,gJ arising
from the presence of the unknown O �g4� and higher-order
terms in Eq. (8), which was arbitrarily set to g4�t��p2;
the uncertainty in the t2 contribution, 


p
3t2g�t��p3, is

negligible at low t compared to this. At the lower tem-
peratures, the data agree extremely well with the prediction
of Lukyanov’s theory. At the highest temperatures, higher-
order tn terms also become important. Irrespective of these
uncertainties in the theoretical prediction at high tempera-
tures, we can safely conclude directly from Fig. 2 that
our numerical x�t� data are in agreement with the theory
of Lukyanov [7] to within an absolute accuracy of 1 3

1026 (relative accuracy 	10 ppm) from t � 5 3 10225

to t � 5 3 1027. The agreement at the lower tempera-
tures, O �1027�, is much better than this.

Our C�t� data for t # 2 are shown in the inset
of Fig. 3 and have an estimated accuracy of 3 3

10210C�t�. The data show a maximum with a value
Cmax � 0.3 497 121 235�2� at a temperature tmax

C �
0.48 028 487�1�. The electronic specific heat coeffi-
cient C�t��t is plotted in Fig. 3. These data exhibit a
maximum with a value �C�t�max � 0.8 973 651 576�5�
at tmax

C�t � 0.30 716 996�2�. The existence of low-t log
corrections to C�t� is revealed in the top plot of DC�t��t
FIG. 2. Semilog plot versus temperature t at low t of the dif-
ference between our Bethe ansatz magnetic susceptibility xJ
data and the prediction xlt,gJ of Lukyanov’s theory [7]. The
error bars are the estimated uncertainties in xlt,g�t�J.

in Fig. 4, where DC�t� � C�t� 2 2t�3 and 2t�3 is the
low-t limit of C�t�. The influence of the g3 log correction
term in Eq. (9) is evaluated by subtracting it in the plot
of DC�t��t as shown by the middle curve in Fig. 4.
The t � 0 singularity is still present but with reduced
amplitude; this demonstrates that additional logarithmic
correction terms are important within the accuracy of
the data.

We estimate the unknown coefficients of the next two
logarithmic correction �g4, g5� terms in Eq. (9) from our
C�t� data as follows. From Eq. (9), if we plot the data
as �C�t��t 2 �2�3� �1 1 3g3�8���g4 versus g and fit the
lowest-t data by a straight line, the y intercept gives the
coefficient of the g4 term and the slope gives the coeffi-
cient of the g5 term. We fitted a straight line to the data

FIG. 3. Electronic specific heat coefficient C�T versus tem-
perature T for the S � 1�2 AF uniform Heisenberg chain. In
the inset the specific heat C versus T is shown.
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FIG. 4. Difference DC�t between our Bethe ansatz electronic
specific heat coefficient data and the exact coefficient 2�3 at
t � 0 (top data set) versus temperature t. Successive data sets
show the influence of subtracting cumulative logarithmic cor-
rection terms.

in such a plot for 5 3 10225 # t # 5 3 1029 as shown
by the weighted linear fit in Fig. 5, where the parameters
of the fit are given in the figure. By subtracting the influ-
ences of these two logarithmic correction terms from the
middle data set as shown in the bottom data set in Fig. 4,
the singular behavior as t ! 0 is largely removed, leaving
a behavior which is close to a t2 dependence as predicted
by the last term in Eq. (9). Further discussion of the pre-
dictions of [7], and high-accuracy fits �0 # t # 5� to our
C�t� and x�t� data and the respective exact t � 0 values,
will be presented elsewhere [14].

In conclusion, we have presented an analytic approach to
the thermodynamics of the S � 1�2 AF Heisenberg chain
on the basis of a finite number of elementary excitations.
We envisage that this approach can be generalized to study
a variety of other systems such as Hubbard and t-J models,

FIG. 5. Plot showing the estimation of the coefficients of the
g4 and g5 logarithmic correction terms in Eq. (9). The error
bars on the data points are smaller than the symbols.
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quantum spin chains with higher symmetries, and systems
with orbital degrees of freedom. Our free energy expres-
sion has allowed numerical calculations of x�t� and C�t�
for the Heisenberg chain to be carried out to much higher
accuracy and to much lower temperatures than heretofore
attained. Our x�t� data are in excellent agreement with
the theory of Lukyanov [7] at low t. The logarithmic cor-
rection in Lukyanov’s theory for C�t� is found insufficient
to describe our C�t� data accurately even at very low t.
However, the t dependence of the deviation agrees with
the form of his theory, which enabled us to estimate the
unknown coefficients of the next two logarithmic correc-
tion terms in his theory for C�t� from our C�t� data. Thus
we have verified Lukyanov’s theory [7] of a critical system
perturbed by marginal operators and have given evidence
that his asymptotic expansion can be systematically ex-
tended to higher order.
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